Consumer Confidence Report for Public Water System M E N WSC

This is your water quality report for January 1 to December 31, 2023

M E N WSC provides surface water from Navarro Mills Reservoir and Lake Halbert located in NavarroCounty, Corsicana.

For more information regarding this report contact:

Name: Dennis Donoho Phone: (903) 872-1899

Este reporte incluye información importante sobre el agua para tomar. Para

asistencia en español, favor de llamar al telefono (903) 872-1899.

Definitions and Abbreviations

Definitions and Abbreviations The following tables contain scientific terms and measures, some of which may require explanation.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have

been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL

violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available

treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for

control of microbial contaminants.

Maximum residual disinfectant level goal or The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use

of disinfectants to control microbial contaminants

MRDLG:

MFL million fibers per liter (a measure of asbestos)

mrem: millirems per year (a measure of radiation absorbed by the body)

na: not applicable.

NTU nephelometric turbidity units (a measure of turbidity)

pCi/L picocuries per liter (a measure of radioactivity)

Definitions and Abbreviations

ppb: micrograms per liter or parts per billion

ppm: milligrams per liter or parts per million

ppq parts per quadrillion, or picograms per liter (pg/L)

ppt parts per trillion, or nanograms per liter (ng/L)

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water.

Information about your Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water

M E N WSC purchases water from CITY OF CORSICANA. CITY OF CORSICANA provides purchase surface water from Navarro Mills Reservoir, and Lake Halbert located in Navarro County, Corsicana.

Detected Regulated Contaminates for 2023

F	D1	Navarro	Mills	Reservoir
_	ГТ	INAVALIU	IVIIIIS	DESCLACII

SOC Pesticide	Detected Quantity	MCL	Date Collected	Analytical Method
Atrazine	0.7ug/L	3 ug/L	2/9/2023	E525.2 GC/MS
Metolachlor	<0.1 ug/L	N/A	2/9/2023	E525.2 GC/MS
VOC's				
Acetone	<5.00 ug/L	N/A	7/31/2023	E524.2 GC/MS
Cholroform	22.7 ug/L	N/A	7/31/2023	E524.2 GC/MS
Bromodichloromethane	20.9 ug/L	N/A	7/31/2023	E524.2 GC/MS
Dibromochloromethane	10.2 ug/L	N/A	7/31/2023	E524.2 GC/MS
Inorganics				
Chloride	15.5 mg/L	300.0 mg/L	2/9/2023	E300.0 Anions
Fluoride	0.586 mg/L	4.0 mg/L	2/9/2023	E300.0 Anions
Nitrate (an N)	0.0664 mg/L	10.0 mg/L	2/9/2023	E300.0 Anions
Sulfate	50.6 mg/L	300.0 mg/L	2/9/2023	E300.0 Anions
Total Dissolved Solids	193 mg/L	1000.0 mg/L	2/9/2023	SM2540C
Inorganics Metals Trace Elements				
Calcium	35.8 mg/L	N/A	2/9/2023	E200.7 Metals, Trace
Magnesium	2.78 mg/L	N/A	2/9/2029	E200.7 Metals, Trace
Potassium	4.05 mg/L	N/A	2/9/2023	E200.7 Metals, Trace
Sodium Total	24.3 mg/L	N/A	2/9/2023	E200.7 Metals, Trace
E200.8 ICP-MS				
Aluminum Total	0.026 mg/L	0.2 mg/L	2/9/2023	E200.8IC-MS
Barium Total	0.043 mg/L	2.0 mg/L	2/9/2023	E200.8IC-MS
Chromium	<0.00100 mg/L	0.10 mg/L AL	2/9/2023	E200.8IC-MS
Copper Total	0.0022 mg/L	1.0 mg/L AL	2/9/2023	E200.8IC-MS
Manganese Total	0.0011 mg/L	0.05 mg/L	2/9/2023	E200.8IC-MS
Nickel Total	0.0014 mg/L	.1 mg/L	2/9/2023	E200.8IC-MS

EP 2 Lake Halbert

SOC Pesticide	Detected Quantity	MCL	Date Collected	Analytical Method
Atrazine	<0.1 ug/L	3 ug/L	2/9/2023	E525.2 GC/MS
Metolachlor	<0.1 ug/L	N/A	2/9/2023	E525.2 GC/MS
VOC's				
Acetone	<5.00 ug/L	N/A	7/31/2023	E524.2 GC/MS
Cholroform	17.0 ug/L	N/A	7/31/2023	E524.2 GC/MS
Bromodichloromethane	16.9 ug/L	N/A	7/31/2023	E524.2 GC/MS
Dibromochloromethane	7.44 ug/l	N/A	7/31/2023	E524.2 GC/MS
Inorganics				
Chloride	18.1 mg/ L	300.0 mg/L	2/9/2023	E300.0 Anions
Fluoride	0.470 mg/L	4.0 mg/L	2/9/2023	E300.0 Anions
Nitrate (an N)	0.270 mg/L	10.0 mg/L	2/9/2023	E300.0 Anions
Sulfate	17.3 mg/L	300.0 mg/L	2/9/2023	E300.0 Anions
Total Dissolved Solids	261 mg/L	1000.0 mg/L	2/9/2023	SM2540C
Inorganics Metals Trace Element	ts			
Calcium	40.04 mg/L	N/A	2/9/2023	E200.7 Metals, Trace
Magnesium	6.30 mg/L	N/A	2/9/2029	E200.7 Metals, Trace
Potassium	5.02 mg/L	N/A	2/9/2023	E200.7 Metals, Trace
Sodium Total	29.1 mg/L	N/A	2/9/2023	E200.7 Metals, Trace
E200.8 ICP-MS				
Aluminum Total	0.029mg/L	0.2 mg/L	2/9/2023	E200.8IC-MS
Barium Total	0.049 mg/L	2.0 mg/L	2/9/2023	E200.8IC-MS
Chromium	<0.00100 mg/L	0.10 mg/L AL	2/9/2023	E200.8IC-MS
Copper Total	0.0014mg/L	1.0 mg/L AL	2/9/2023	E200.8IC-MS
Maganese Total	<0.00100 mg/L	0.05 mg/L	2/9/2023	E200.8IC-MS
Nickel Total	<0.00100 mg/L	.1mg/L	2/9/2023	E200.8IC-MS

DEFINITIONS

ug/L parts per billion or micrograms per liter mg/L parts per million or milligrams per liter

Only contaminants at detectable level reported

TCEQ completed a Source Water Susceptibility for all drinking water systems that own their sources. This report describes the susceptibility and types of constituents that may come into contact with the drinking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our system contact MEN WSC, Dennis Donoho, (903) 872-1899.

Coliform Bacteria

Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Total No. of Positive E. Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination
0	1 positive monthly sample.	3		0	N	Naturally present in the environment.

TCEQ Level 1 and Level 2 Assessments were required for MEN WSC in 2023 that involved the following procedures.

- (A) Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. Some of our monthly BT sample lab results showed presents of total coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs in repeat samples, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.
- (B) During the past year we were required to conduct one (1) Level 1 assessment(s). One (1) Level 1 assessment(s) were completed. In addition, we were required to take two (2) corrective actions and we completed two (2) of these actions.
- (C) During the past year one (1) Level 2 assessment(s) were required to be completed for our water system. One (1) Level 2 assessment(s) were completed. In addition, we were required to take six (6) corrective actions and we have completed four (4) of these actions.
- (D) Any public water system that failed to complete all the required assessments or correct all identified sanitary defects, is in violation of the treatment technique requirement and shall also include one or both of the following statements as appropriate:
- (ii) During the past year we failed to correct all identified defects that were found during the assessment. Two (2) CARP items regarding exterior corrosion at the plant sites will be addressed following completion of a presently approved USDA RD improvement loan and grant project that is expected to begin construction in 2024 and be completed in 2025.

MEN WSC's Level 1 Assessments were triggered by original and repeat BT samples showing positive total coliform results, but no positive E.coli results. This means there was the possibility of the water becoming a health risk if contaminated by an outside source resulting in possible bacteria (E.coli) contamination of drinking water. The Level 1 or Level 2 assessments did not identify any specific causes for the positive total coliform results. Additional steps were taken at the sample sites such as additional flushing, cleaning at the site and better protection of samples bottles. All of the following month samples on both occurrences were negative for total coliform. MEN WSC did have another original and repeat BT sample at a different sample location that triggered a Level 2 Assessment because of the previous Level 1 assessment being within a year. A TCEQ contractor was sent to assist in determining the possible cause of the repeat sample being total coliform positive. After reviewing systems sample sites and the required paper records no specific causes were determined. Recommendations were made for improving the sample sites and changes to the sample sites have been completed. We are now also taking additional nitrification identifying testing throughout the system.

Additional information of the Level 1 and 2 assessments is available for review at the MEN WSC office or you may call if there are additional questions.

2023 Water Quality Test Results

Disinfection By-Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination	
Haloacetic Acids (HAA5)	2023	17	7.8 - 21.5	No goal for the total	60	ppb	N	By-product of drinking water disinfection.	
*The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year									
Total Trihalomethanes (TTHM)	2023	47	36.4 - 54.4	No goal for the total	80	ppb	N	By-product of drinking water disinfection.	

^{*}The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Nitrate [measured as Nitrogen]	2023	0.311	0.0598 - 0.311	10	10	ppm		Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Disinfectant Residual

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Chloramines Total & Free	2023	1.38	0.2-3.8	4	4	ppm		Water additive used to control microbes.

UCMR5 DATA

UCMR5 Contaminant	Minimum Reporting level (MRL, μg/L)	Average levels	Sample Year						
PFPeA	0.003	0.003-0.0044	2023						
PFBA	0.005	0.0258	2023						
PFHxA	0.003	0.0041	2023						
Contaminant Abbeviations									
PFPeA perfluoropentanoic acid									
PFBA perfluorobutanoic acid									
PFHxA perfluorohexanoic acid									

Violations

Chlorine

Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort.

Violation Type	Violation Begin	Violation End	Violation Explanation
Disinfectant Level Quarterly Operating Report (DLQOR).	01/01/2023		We failed to report within the required time period our testing results our drinking water for the contaminant and period indicated

Note: Report mailed 4/7/2023 remailed with 2nd quarters DLQOR

Violations

Lead and Copper Rule

The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper containing plumbing materials.

Violation Type	Violation Begin	Violation End	Violation Explanation
FOLLOW-UP OR ROUTINE TAP M/R (LCR)	07/01/2023		We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated.

Public Notification Rule

The Public Notification Rule helps to ensure that consumers will always know if there is a problem with their drinking water. These notices immediately alert consumers if there is a serious problem with their drinking water (e.g., a boil water emergency).

Violation Type	Violation Begin	Violation End	Violation Explanation
PUBLIC NOTICE RULE LINKED TO VIOLATION	12/31/2023	2023	We failed to adequately notify you, our drinking water consumers, about a violation of the drinking water regulations.

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

MEN WSC has violated the monitoring and reporting requirements set by Texas Commission on Environmental Quality (TCEQ) in Chapter 30, Section 290, Subchapter F. Even though these were not emergencies, as our customers, you have the right to know what happened and what we are doing to correct these situations.

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During January 1, 2023 – June 30,2023 we did not monitor or test for lead/copper and therefore cannot be sure of the quality of your drinking water during that time.

The table below lists the contaminant(s) we did not properly test for during the last year, how often we are supposed to sample for lead/copper, how many samples we are supposed to take, how many samples we took, when samples should have been taken, and the date on which the follow-up samples will be taken.

Contaminant	Required sampling frequency	Number of samples taken	When samples should have been taken	When samples were or will be taken
Lead and copper tap water sampling	yearly	20	1/1/23 – 6/30/23	7/1/24 – 9/30/24
Lead and copper entry point sampling	NA			
Water quality parameters	NA			

What is being done?

We are working to correct the problem. For more information, please contact Dennis Donoho at 903-872-1899 or P O Box 3019, Corsicana, TX 75151. Note: During the previous nine lead/copper sampling periods stating in 1993 none of the samples have exceeded the 90% level requirement resulting in longer periods between sampling requirements. At one time MEN WSC sampling period was reduced to nine year intervals.

Please share this information with all other people who drink this water, especially those who may not have received this notice directly (i.e., people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

This notice is being sent to you by MEN WSC Public Water System Number: TX 1750015

Date Distributed: 6/30/2024

Turbidity and TOC 2023															
Navarro Mills Reservoir						Lake Halbert									
	N	TU				тос			1	NTU				тос	
Month	Average	Highest	% Compliance	Raw TOC	Tap TOC	% Removal	% Compliance	Month	Average	Highest	% Compliance	Raw TOC	Tap TOC	% Removal	% Compliance
Jan	0.1	0.14	100	5.58	3.9	30.1	314	Jan	0.07	0.11	100	5.88	4.13	29.8	100
Feb	0.1	0.16	100	3.97	4	-0.8	100	Feb	0.07	0.12	100	6.44	4.46	30.7	100
Mar	0.09	0.16	100	4.88	3.68	24.6	256	Mar	0.07	0.12	100	5.98	3.96	33.8	135
APR	0.04	0.12	100	5.08	3.61	28.9	301	APR	0.04	0.14	100	5.97	4.25	28.8	100
May	0.04	0.12	100	4.9	3.64	25.7	268	May	0.03	0.11	100	6.4	4.38	31.6	126
Jun	0.04	0.14	100	8.89	6.75	24.1	251	Jun	0.03	0.12	100	8.19	6.45	21.2	100
Jul	0.08	0.014	100	4.84	3.58	26	81	Jul	0.06	0.12	100	4.84	3.01	37.8	108
Aug	0.07	0.1	100	5.72	4.02	29.7	100	Aug	0.05	0.09	100	5.35	3.48	35	100
Sep	0.06	0.11	100	5.34	4.02	24.7	100	Sep	0.05	0.11	100	5.03	3.44	31.6	100
Oct	0.07	0.16	100	4.88	3.81	21.9	100	Oct	0.08	0.12	100	6.43	4.44	30.9	100
Nov	0.07	0.11	100	5.15	3.96	23.1	100	Nov	0.07	0.14	100	6.22	4.3	30.9	100
Dec	0.07	0.16	100	5.57	3.82	31.4	100	Dec	0.07	0.13	100	6.98	4.75	31.9	100
Average	0.07			5.4	4.07	24.1	172.6		0.06			6.14	4.25	31.2	105.8

		Raw		%
	NTU	TOC	TapTOC	Removal
Average Both Plants	0.06	5.77	4.16	27.7

TOC% Compliance is based on compliance with the TCEQ rules on TOC removal. Plants must meet or exceed 100% compliance based on a running quarterly average.